全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
选择Ordinary Kriging中的Prediction Map,即使用普通克里格方法生成一个表面预测图。普通克里格方法是最常用的地统计分析方法。其他几种依次为简单克里格、泛克里格、指示克里格、概率克里格、析取克里格。这集中克里格的区别是由于克里格的形式及其数据特点的不同。
最后的两个图表是针对两个数据集而言的。
(6)普通Qqplot分布图
评估两个数据集分布的相似程度。利用两个数据集中具有相同累积分布值的数据值来作图。
(7)正交协方差函数云。
横坐标:两点间的距离;
纵坐标:两点间的距离所对应的样点对的理论正交协方差。
这些图彼此相关联,并与ArcMap中的图层相关联。即,在某个分析图中选择某些样点,在ArcMap图层及其他分析图中同样会选中这些点。如下图。
后面将在数据检查的基础上进行表面预测。
1.4制作表面预测图:
通过上面的数据检查,发现数据接近正态分布、有空间相关、无离群值、东西方向有倒"U"形趋势。决定使用普通克里格方法进行表面预测。下面的步骤是针对此数据进行的。
将使用地统计模块的第二个菜单Geostatistical Analyst……。
第一步:选择输入数据和方法面板(Choose Input Data and Method)
选择使用的数据及其属性:分别在Input和Attribute中选择
选择预测方法:在Methods中选择。预测方法的选择要根据数据分析的结果而定。现在假如选择Kriging方法(其实所谓地统计方法,最主要并且用的最多的就是Kriging方法的几种变化形式)。
Validate是个可选项,选择使用何种方法对生成的预测图进行检验,如果想用检验方法,则选中此项并设置检验数据集和属性;如果对结果进行交叉检验,则不要选择此项。
第二步:地统计方法选择面板(Geostatistical Method Selection)
选择Ordinary Kriging中的Prediction Map,即使用普通克里格方法生成一个表面预测图。普通克里格方法是最常用的地统计分析方法。其他几种依次为简单克里格、泛克里格、指示克里格、概率克里格、析取克里格。这集中克里格的区别是由于克里格的形式及其数据特点的不同。
Transmition选项:对数据集进行转换,由于某些方法要求数据正态分布,因此如果数据与正态分布差距很大,可以在此选择一种方法对数据进行转换。
Order of trend:如果数据在某方向上存在趋势,则为了提高预测的准确性,一般要剔除趋势。在此处选择趋势方程的阶数:线性、一阶、或无趋势等。数据的趋势有无以及阶数在数据检查时得到,即用Explore Data菜单下的Trend analysis来分析得到。
第三步:趋势剔除面板(Detrending)
此面板只有在第二步中选择了Order of trend选项是才会出现,一般为缺省即可。