『公告』 预祝您龙年大吉,万事如意, 过节期间, 大家如需数据服务,请拨打400 或直接添加客服微信,再祝大家龙年,心想事成。
关注我们 新浪 腾讯
数据订购
销售咨询
电话:13911690905
微信:13911690905
邮箱: 2206260@qq.com
综合咨询:2206260
2863548516
2629602953

基于MODIS数据的决策树分类方法研究与应用

作者:刘勇洪,牛铮,王长耀   出版商:遥感学报   出版日期:2005 年 7 月
摘  要:介绍了目前国际上流行的两种决策树算法CART算法与C4.5算法,并引入了两种机器学习领域里的分类新技术-boosting和bagging技术,为探究这些决策树分类算法与新技术在遥感影像分类方面的潜力,以中国华北地区MODIS250m分辨率影像进行了土地覆盖决策树分类试验与分析。研究结果表明决策树在满足充分训练样本的条件下,相对于传统方法如最大似然法(MLC)能明显提高分类精度,而在样本量不足下决策树分类表现差于MLC;并发现在单一决策树生成中,分类回归树CART算法表现较C4.5算法具有分类精度和树结构优势,分类精度的提高取决于树结构的合理构建与剪枝处理;另外在决策树CART中引入boosting技术,能明显提高那些较难识别类别的分类准确率18.5%到25.6%。
本站共享资料便于大家学习,如您需要某些资料数据,可以注册向客服索取。
相关数据
暂无相关数据!
相关文章
暂无相关文献!
声明:本站文献资源来源于网络,仅供学习交流使用,不得以任何形式用于商业用途,请于浏览后24小时内删除。如有疑问欢迎与我们联系,感谢您的支持。
      京ICP备2025132830号-1 京公网安备 号