『公告』 预祝您龙年大吉,万事如意, 过节期间, 大家如需数据服务,请拨打400 或直接添加客服微信,再祝大家龙年,心想事成。
关注我们 新浪 腾讯
数据订购
销售咨询
电话:13911690905
微信:13911690905
邮箱: 2206260@qq.com
综合咨询:2206260
2863548516
2629602953

Evaluation of approaches for forest cover estimation in the Pacific Northwest , USA , using remote sensing

作者:D.S. Boyd, G.M. Foody, W.J. Ripple   出版商:Applied Geography   出版日期:2002 年 1 月
Abstract:The transformation of land cover, in particular coniferous forest, constitutes one of the most notable agents of regional-to-global-scale environmental change. Remote sensing provides an excellent opportunity for providing forest cover information at appropriate spatial and temporal scales. The optimal exploitation of remote sensing relies on the link between known forest cover and the remotely sensed dataset. This paper explores the accuracy of three methods vegetation indices, regression analysis and neural networks – for estimating coniferous forest cover across the United States Pacific Northwest. All methods achieved a similar accuracy of forest cover estimation. However, in view of the benefits and limitations of each, the neural network approach is recommended for future consideration.

本站共享资料便于大家学习,如您需要某些资料数据,可以注册向客服索取。
相关数据
暂无相关数据!
相关文章
暂无相关文献!
声明:本站文献资源来源于网络,仅供学习交流使用,不得以任何形式用于商业用途,请于浏览后24小时内删除。如有疑问欢迎与我们联系,感谢您的支持。
      京ICP备2025132830号-1 京公网安备 号