『公告』 预祝您龙年大吉,万事如意, 过节期间, 大家如需数据服务,请拨打400 或直接添加客服微信,再祝大家龙年,心想事成。
关注我们 新浪 腾讯
数据订购
销售咨询
电话:13911690905
微信:13911690905
邮箱: 2206260@qq.com
综合咨询:2206260
2863548516
2629602953

位置社交网络中基于评论文本的兴趣点推荐

作者:王啸岩   出版商:武汉理工大学计算机科学与技术学院   出版日期:2017 年 12 月


        摘 要: 随着位置社交网络(Location-Based Social Networks,LBSN)的快速发展,兴趣点(Point-Of-Interest,POI)推荐对于用户和商家愈发重要。目前基于社交网络的兴趣点推荐算法主要利用用户的历史签到数据和社交网络数据来提升推荐质量,但忽略了利用兴趣点的评论文本数据;并且 LBSN 中的数据经常会存在部分信息缺失的情况,对兴趣点推荐算法而言如何保证鲁棒性是一个巨大的挑战。为此,提出了一种新的用户兴趣点推荐模型,称其为 SoGeoCom模型。该模型融合了用户社交网络数据、地理位置数据以及兴趣点的评论文本数据这3个因素来进行兴趣点推荐。基于来自 Yelp的真实数据集的实验结果表明,与其他主流的兴趣点推荐算法相比,SoGeoCom 模型能够提高准确率和召回率,并且具有良好的鲁棒性,获得了更好的推荐效果。


本站共享资料便于大家学习,如您需要某些资料数据,可以注册向客服索取。
相关数据
暂无相关数据!
相关文章
暂无相关文献!
声明:本站文献资源来源于网络,仅供学习交流使用,不得以任何形式用于商业用途,请于浏览后24小时内删除。如有疑问欢迎与我们联系,感谢您的支持。
      京ICP备2025132830号-1 京公网安备 号