全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
摘要:利用遥感植被指数、典型植被样方和地面观测信息进行塔里木河干流植被监测是目前的主要方法。由于塔里木河干流具有流域下垫面均匀性差,自然植被随机分布的特点,使得现有研究方法局限在特定的时间和空间尺度,很难使用地面的观测数据和不同尺度的遥感数据进行植被生长状态的协同分析。针对这些问题,本文提出了利用不同分辨率遥感数据和地面观测数据进行多尺度协同分析的方法MSSA(MultipleScaleSynergyAnalysis)。该方法包括以下几个步骤:①通过低空间分辨率的遥感数据构建时间序列的塔里木河干流植被指数分布图像,在分析图像特征的基础上划分塔里木河遥感监测单元;②对监测单元内部不同组分的时间和空间状态参数进行量化与率定;③根据几何光学模型原理和植被随机分布特性,采用线性混合模型模拟单元植被指数;④根据模拟结果和遥感数据的对比分析,获得地面植被参量的可靠估计。该方法将地面组分的状态参量和遥感数据通过模拟模型相关联,实现了不同时空尺度遥感数据以及地面样方或者点观测数据的协同分析,为塔里木河干流植被监测进行长期、细致的研究建立了海量数据综合分析的方法体系。
相关数据
暂无相关数据!
|
相关文章
暂无相关文献!
|