全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
摘 要: 空间负荷预测是城网规划领域的基础工作,目前空间负荷预测大多是依靠一些历史负荷数据来进行,却忽视
了地理空间信息的影响
。
对于同一类用地来说,由于各小区的地理空间信息不同,其发展程度存在一定的差异,进而各
小区的负荷密度也不相同,如果采用统一的负荷密度进行预测,势必会带来较大的误差
。
因此,该文提出一种基于模糊
粗糙集理论和时空信息的空间负荷预测方法
。
借助地理信息系统(
geographic information system
,
GIS
) 获取供电小区的
空间信息,分析空间信息对各类负荷分布的影响
。
结合模糊粗糙集理论得到每个供电小区适合其发展的统一模糊粗糙
因子( 因为每类小区的统一模糊粗糙因子的划定都有其自身的标准,该统一模糊粗糙因子的大小仅适于同种类型小区
间的比较) ,从而刻画出同类负荷间负荷密度的差异
。
该文所提方法能够更精确地刻画负荷发展不均衡
、
不协调的现
象,提高空间负荷预测的精度
。
工程实例分析表明了该方法的实用性和有效性
。
相关数据
暂无相关数据!
|
相关文章
暂无相关文献!
|