支持向量机在遥感数据分类中的应用新进展

作者:张 睿,马建文   出版商:地球科学进展   出版日期:2009 年 5 月
摘  要:支持向量机是一种基于统计学习理论的新型机器学习算法,它通过解算最优化问题,在高维特征空间中寻找最优分类超平面,从而解决复杂数据的分类及回归问题。随着应用面的不断扩大,支持向量机在遥感领域也得到了广泛关注。该算法已经成功的应用于遥感数据的土地覆盖、土地利用分类,多时相遥感数据的变化检测,多源遥感数据信息融合等,并且在高光谱遥感数据处理中得到了广泛应用。综述了支持向量机算法在遥感数据分类中的应用。首先对支持向量机的理论进行简要介绍,进而综述了该算法在不同遥感问题中的应用进展,最后阐述了新型支持向量机算法的发展以及在遥感中的应用。
相关数据
暂无相关数据!
相关文章
暂无相关文献!
声明:本站文献资源来源于网络,仅供学习交流使用,不得以任何形式用于商业用途,请于浏览后24小时内删除。如有疑问欢迎与我们联系,感谢您的支持。