A case-based reasoning approach for land use change prediction

作者:Du Yunyan,Wen Wei,Cao Feng,Ji Min   出版商:ELSEVIER   出版日期:2010 年 1 月
Abstract:Although has been widely used to study geographical problems, case-based reasoning (CBR) method is far less than perfect and research is in great need of to improve CBR-based geographic data representation modeling, as well as spatial similarity computation and reasoning algorithm. This paper reports an improved CBR-based method for studying the spatially complex land use change. Based on a brief sum-mary of advantages and challenges of current existing quantitative methods, the paper first proposes to introduce the CBR approach for land use change study. A three-component model ("problem", "geo-graphic environment", and "outcome") was proposed to represent the land use change cases among which there are complicated and inherent spatial relationships. This paper then presents an algorithm to retrieve the inherent spatial relationships, which are then introduced into the CBR similarity reasoning algorithm to predict land use change. The method was tested by examining the land use change in Pearl River Mouth area in China and yields a similar prediction accuracy of 80% as that derived by applying the Bayesian networks approach to the exact same data. As a result, the CBR-based method proposed in this study provides an effective and explicit solution to represent and solve the complicated geographic problems.
相关数据
暂无相关数据!
相关文章
暂无相关文献!
声明:本站文献资源来源于网络,仅供学习交流使用,不得以任何形式用于商业用途,请于浏览后24小时内删除。如有疑问欢迎与我们联系,感谢您的支持。