决策树分类法及其在土地覆盖分类中的应用

作者:李 爽,丁圣彦,钱乐祥   出版商:遥感技术与应用   出版日期:2002 年 2 月
摘  要:基于决策树分类算法在遥感影像分类方面的深厚潜力,探讨了3种不同的决策树算法(UDT、MDT和HDT)。首先对决策树算法结构、算法理论进行了阐述,然后利用决策树算法进行遥感土地覆盖分类实验,并把获得的结果与传统统计分类法进行比较。研究表明,决策树分类法有诸多优势,如:相对简单、明确、分类结构直观,另外,与以假定数据源呈一固定概率分布,然后在此基础上进行参数估计的常规分类方法相比,决策树属于严格“非参”,对于输入数据空间特征和分类标识具有更好的弹性和鲁棒性(Robust)。
相关数据
暂无相关数据!
相关文章
暂无相关文献!
声明:本站文献资源来源于网络,仅供学习交流使用,不得以任何形式用于商业用途,请于浏览后24小时内删除。如有疑问欢迎与我们联系,感谢您的支持。