ASTER数据的自组织神经网络分类研究

作者:哈斯巴干,马建文,李启青   出版商:地球科学进展   出版日期:2003 年 6 月
摘  要:传统的遥感数据分类方法大多基于统计学的参数估计,假设数据分布服从高斯正态分布。神经网络方法无需参数估计和统计假设,因而,近来越来越多地应用于遥感数据分类之中。介绍了基于聚类分析的自组织特征映射分类方法。ASTER卫星数据是新型遥感数据,包括3个15 m分辨率波段和3个30 m分辨率的短波红外波段。选择北京地区的ASTER数据作为方法实验数据,首先对数据进行了小波融合,然后进行了土地覆盖类型的自组织特征映射神经网络分类研究,把研究结果同最大似然判别法得到的分类结果进行了比较,分类精度比最大似然判别法总体提高了9%。
相关数据
暂无相关数据!
相关文章
暂无相关文献!
声明:本站文献资源来源于网络,仅供学习交流使用,不得以任何形式用于商业用途,请于浏览后24小时内删除。如有疑问欢迎与我们联系,感谢您的支持。