基于蚁群规则挖掘算法的多特征遥感数据分类

作者:戴芹,刘建波   出版商:地理研究   出版日期:2009 年 7 月
摘  要:蚁群算法作为一种新型的智能优化算法,已经成功应用在许多领域,然而应用蚁群优化算法进行遥感数据处理则是一个新的研究热点。蚁群规则挖掘算法是基于分类规则挖掘进行分类,能够处理多特征的数据。因此,论文将蚁群规则挖掘算法应用到多特征遥感数据分类处f}中,并采用北京地区的Landsat TM和Envisat ASAR数据作为实验数据,对选择的遥感数据进行了多特征分类实验。实验结果分别与最人似然分类法、C41 5方法进行对比,分析表明1)蚁群规则挖掘算法是一种无参数分类的智能方法,具有很好的鲁棒性,2)能够挖掘较简单的分类规则3)能够充分利用多源遥感数据等。它可以充分利用多特征数据进行土地覆盖分类,从而能够提高分类的效率。
相关数据
暂无相关数据!
相关文章
暂无相关文献!
声明:本站文献资源来源于网络,仅供学习交流使用,不得以任何形式用于商业用途,请于浏览后24小时内删除。如有疑问欢迎与我们联系,感谢您的支持。