基于光学和雷达遥感影像融合的地类识别研究

作者:韩瑞梅   出版商:河南理工大学 矿山空间信息技术国家测绘与地理信息局重点实验室   出版日期:2015 年 11 月
  摘要:针对光学和雷达协同处理信息挖掘的需求,为提高主被动遥感数据协同处理应用于土地利用/覆盖地类识别的能力,提出了一种改进的光学和雷达遥感数据融合识别方法。以意大利PAVIA地区的ERSSAR和LandsatTM影像、江苏徐州矿区的ALOSPALSAR和AVNIR-2影像对,ALOSPALSAR和SPOT影像对为信息源,利用改进的小波变换与色彩域变换算法进行处理,融合结果与传统的Brovey、GS、PCT、HSV、Wavelet融合算法作定量比较,并采用支持向量机(SVM)算法以相同的训练区分别对融合前后的影像,及不同融合结果进行典型地物类型识别。通过融合影像定量指标评价和识别应用验证,结果表明改进的融合算法很好地保留了融合前影像的光谱和纹理信息,且使用融合后影像识别的精度不仅明显优于单独利用光学或雷达影像,而且比采用的传统融合算法的识别结果也有较大提高。
相关数据
暂无相关数据!
相关文章
暂无相关文献!
声明:本站文献资源来源于网络,仅供学习交流使用,不得以任何形式用于商业用途,请于浏览后24小时内删除。如有疑问欢迎与我们联系,感谢您的支持。