基于Logistic回归和RBF神经网络的土壤侵蚀模数预测

作者:周 宁   出版商:东北林业大学 林学院   出版日期:2015 年 6 月
  摘 要:[目的]寻求估算土壤侵蚀模数的新方法,并通过GIS实现对土壤侵蚀空间分布情况的预测。[方法]采用土壤侵蚀模数作为判别条件,分别验证基于Logistic回归和RBF神经网络而建立的土壤侵蚀预报模型的适用性,进而构建并验证改进模型——LOG-RBF神经网络土壤侵蚀预测模型。[结果](1)Logistic回归模型判别目标土地是否发生土壤侵蚀的优势明显,未发生和发生土壤侵蚀的预测正确率分别为77.4%和97.9%,总预测正确率为94.9%。(2)RBF神经网络模型估计土壤侵蚀模数的能力较强,模拟结果的相对误差和平方和误差分别为0.612%和13.292,R2为0.57。(3)LOG-RBF神经网络土壤侵蚀预测模型预测结果的相对误差和平方和误差比RBF神经网络模型模拟结果分别降低了0.157%和2.601。
相关数据
暂无相关数据!
相关文章
暂无相关文献!
声明:本站文献资源来源于网络,仅供学习交流使用,不得以任何形式用于商业用途,请于浏览后24小时内删除。如有疑问欢迎与我们联系,感谢您的支持。