基于植被分区的多特征遥感智能分类

作者:于菲菲   出版商:中南大学地球科学与信息物理学院   出版日期:2014 年 3 月
  摘要:为了有效地提取大范围地形复杂区域的土地利用/土地覆盖遥感信息,以位居青藏高原与黄土高原过渡地带的青海东部地区为研究区,研究基于蚁群智能优化算法(antcolonyintelligentoptimizationalgorithm,ACIOA)的土地利用/土地覆盖遥感智能分类。首先选用TM图像、DEM、坡度和坡向数据作为分类的特征波段;然后利用归一化植被指数NDVI对实验区数据进行植被分区;最后利用ACIOA算法进行分类规则挖掘,并依据分类规则进行土地利用/覆盖信息的提取。研究表明,基于植被分区的多特征蚁群智能分类的总体精度为88.85%,Kappa=0.86,优于传统的遥感图像分类方法,为大范围地形复杂区域的土地利用/土地覆盖遥感信息提取提供了有效的方法。
相关数据
暂无相关数据!
相关文章
暂无相关文献!
声明:本站文献资源来源于网络,仅供学习交流使用,不得以任何形式用于商业用途,请于浏览后24小时内删除。如有疑问欢迎与我们联系,感谢您的支持。