基于DTW距离的时序相似性方法提取水稻遥感信息——以泰国为例

作者:管续栋   出版商:中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室   出版日期:2014 年 2 月

  摘要:热带季风区多云多雨的天气条件一直是多光谱遥感探测地表信息的难点之一。本文针对东南亚地区多雨多云的复杂天气条件以及水稻种植灵活的特点,利用MODIS时间序列数据,提出一种基于动态时间弯曲(DTW)距离的相似性判别的土地覆盖分类方法,对泰国东北部地区单、双季稻种植面积进行了遥感提取研究。针对研究区雨季遥感影像像元受到云覆盖影响严重,使用替换法去云,结合S-G滤波方法对计算得到的MODIS09A1数据的NDVI时序数据去噪,再采用DTW距离相似性方法逐像元比较与标准NDVI时间序列的时序相似性,将不同类型所得NDVI相似性值作为模糊分类隶属度参考值对泰国东北部地区单季稻、双季稻进行分类提取面积。最后结合野外采样数据、GoogleEarth高清遥感影像进行精度验证。结果表明,该方法能够用于针对东南亚多雨多云区水稻种植面积大范围监测。

相关数据
暂无相关数据!
相关文章
暂无相关文献!
声明:本站文献资源来源于网络,仅供学习交流使用,不得以任何形式用于商业用途,请于浏览后24小时内删除。如有疑问欢迎与我们联系,感谢您的支持。