SVM 法在喀斯特城市土地利用分类中的应用

作者:江丽莎   出版商:广西师范大学计算机科学与信息工程学院   出版日期:2013 年 6 月
  摘要:选取覆盖桂林城区的美国Landsat5卫星TM图像,利用支持向量机SVM提取土地利用信息,同时与最大似然法、决策树和人工神经网络的分类结果比较,研究提高喀斯特城市遥感分类精度的方法,并分析1989~2006年桂林城区土地利用的变化。结果表明,SVM可提高喀斯特城市土地利用信息遥感分类的精度,可有效地动态监测喀斯特城市土地利用的变化。SVM的地物分类精度和Kappa系数最高,总体分类精度为91.7%,超过90%,Kappa系数为0.827,明显高于人工神经网络、决策树和最大似然法的分类结果。1989~2006年桂林城区土地利用类型发生了很大变化,建筑物面积大幅度增加,而农业用地面积大幅度减少,较小水体的面积萎缩甚至完全消失。
相关数据
暂无相关数据!
相关文章
暂无相关文献!
声明:本站文献资源来源于网络,仅供学习交流使用,不得以任何形式用于商业用途,请于浏览后24小时内删除。如有疑问欢迎与我们联系,感谢您的支持。