全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
摘 要: 随着位置社交网络(Location-Based Social Networks,LBSN)的快速发展,兴趣点(Point-Of-Interest,POI)推荐对于用户和商家愈发重要。目前基于社交网络的兴趣点推荐算法主要利用用户的历史签到数据和社交网络数据来提升推荐质量,但忽略了利用兴趣点的评论文本数据;并且 LBSN 中的数据经常会存在部分信息缺失的情况,对兴趣点推荐算法而言如何保证鲁棒性是一个巨大的挑战。为此,提出了一种新的用户兴趣点推荐模型,称其为 SoGeoCom模型。该模型融合了用户社交网络数据、地理位置数据以及兴趣点的评论文本数据这3个因素来进行兴趣点推荐。基于来自 Yelp的真实数据集的实验结果表明,与其他主流的兴趣点推荐算法相比,SoGeoCom 模型能够提高准确率和召回率,并且具有良好的鲁棒性,获得了更好的推荐效果。
相关数据
暂无相关数据!
|
相关文章
暂无相关文献!
|