全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
摘要:MODIS以其时间分辨率、光谱分辨率的优势成为全球及区域土地覆盖研究的主要数据源。但如何快速准确的提取所需土地覆盖信息一直是科学界研究的焦点问题。对于NDVI时序数列分类方面的研究很多,其中影响分类精度的一个重要因素就是NDVI的数据质量问题。本文通过试验发现经过Savizky-Golay滤波处理的NDVI时序数列能够反映植被季相变化特征,与传统的滤波效果相比有明显改善,更符合实际情况。通过分析数据的波谱曲线,滤波后的时序数列能较好的区分植被与非植被、草本(一年生)与木本(多年生)覆盖类型。但研究区内一年一熟的农作物与高盖度草地、落叶针叶林与落叶阔叶林具有相似的物候特征,仅通过NDVI序列很难区分。为解决这一问题,本研究利用MODIS地表温度(landsurfacetemperature,LST)产品对NDVI时序数列修正,利用前5个主成分进行分类。所得分类结果用363个野外调查样区进行验证,总分类精度达到了69.15%,kappa系数为0.6499。结果表明添加LST的时序数列比单纯的NDVI夸大了覆盖类型的差异,提高了分类结果的精度。为充分发挥MODIS高时间分辨率的优势,下一步应对多源数据进行定量分析,结合植被的物候关键期识别土地覆盖类型,必将进一步提高分类精度。
相关数据
暂无相关数据!
|
相关文章
暂无相关文献!
|