全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
摘要:植被的覆盖度能反映植被对光的截获、指示植物的生物产量等。常用的红光/近红外构成的植被指数能指示作物覆盖度,但它们易受到不确定因素的影响,估测结果往往偏差较大。该文以冬小麦为例,研究了利用近红外和短波红外光谱指数估测覆盖度的可行性,并评价了这些指数对品种、肥水处理和叶色的敏感性。试验中对冬小麦用数码相机垂直成像获取照片,利用分类算法自动提取覆盖度。根据同步获取的冬小麦光谱特征,构造了56个红外比值和28个红外归一化光谱指数,并选取了8个基于红光近红外的植被指数,利用通用线性模型(GLM)评价它们对覆盖度的预测能力及敏感性分析。结果表明,短波红外光谱指数R1690/R1450,R1450/R1690及(R1450-R1690)/(R1450+R1690)等不易受品种,肥水管理及叶色的影响,能很好地预测大田冬小麦覆盖度。
相关数据
暂无相关数据!
|
相关文章
暂无相关文献!
|