全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
摘要:土地利用/覆盖分类通常是利用地物的波谱反射特征进行监督或非监督分类,分类结果由于“同物异谱、异物同谱”现象的存在,往往分类精度不高。而植被指数和地表温度作为表征地表覆盖状况的生物物理参数,已成功用于宏观尺度的土地利用/覆盖分类,使得分类结果有所提高,而对于区域尺度的土地利用/覆盖分类却少见报道。本文充分利用TM数据的多光谱特征,从中提取了植被指数NDVI、地表温度Ts、温度植被角度TVA和温度植被距离TVD这四种分类特征进行监督分类,通过对7种组合方案(反射率波段组合、NDVI与反射率波段组合、Ts与反射率波段组合、NDVI与Ts和反射率波段组合、TVA与反射率波段组合、TVD与反射率波段组合、TVA与TVD和反射率波段组合)的分类结果进行比较,得出以下结论:①NDVI、Ts、NDVI和Ts、TVD作为分类特征参与到多波段地表反射率影像分类中,能够提高分类精度,而TVA、TVA和TVD的加入却没有改善分类结果;②总体分类精度受到训练样本与检验样本比例的影响。
相关数据
暂无相关数据!
|
相关文章
暂无相关文献!
|