全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
摘要:近年来,青藏高原地区的水热平衡成为关注的焦点,而地表温度是陆表过程模型的重要输入参数之一。被动微波遥感在地表温度反演上已经取得了一些进展。本文重点用被动微波数据反演地表温度算法对青藏高原地区的数据做不同下垫面的地面验证和分析,包括 Mao(2005)、Richard(2003)、Zhao(2011)3种算法。研究表明:Richard(2003)的单通道算法能够适应低矮植被地区,反演精度高;Zhao(2011)算法在裸土地区的反演精度更高;而 Mao(2005)算法出现了低估的情况。研究发现3种算法的绝对误差随不同时间降雨的变化呈现相同的波动趋势,即反演精度受到降雨的影响,降雨量增大,温度反演误差变大;降雨之后,随着地表逐渐干燥,土壤水分逐渐减小,误差随之减小。
相关数据
暂无相关数据!
|
相关文章
暂无相关文献!
|