一种面向海量浮动车数据的地图匹配方法

作者:王晓蒙   出版商:中国科学院大学   出版日期:2015 年 10 月


        摘要:浮动车数据已广泛应用于交通监管、智能出行、城市规划等领域,地图匹配是浮动车数据关键技术之一,保障 匹配算法精度的同时提高匹配效率,是面向海量浮动车数据地图匹配方法的难点。本文提出一种基于HMM(Hid- den Markov Model)的地图匹配模型,相对传统模型尝试了多个方面的改进:在发射概率计算中引入航向角变量, 并探讨了该变量对模型精度的影响;以格网对路网进行划分,构建哈希索引,实现候选路段快速查找;采用路径无 权距离替代路径实际距离,并对路网进行预处理,根据浮动车有限时间内的活动范围构建路段转移矩阵,实现路段 转移概率快速计算,以减小路径匹配算法时间复杂度。将模型应用于北京出租车轨迹数据匹配结果表明,对于采 样时间间隔在1~120 s的浮动车数据模型切实可行。在满足匹配精度应用需求的前提下,模型效率有了较大幅度 提升,能有效应用于海量浮动车数据地图匹配。

相关数据
暂无相关数据!
相关文章
暂无相关文献!
声明:本站文献资源来源于网络,仅供学习交流使用,不得以任何形式用于商业用途,请于浏览后24小时内删除。如有疑问欢迎与我们联系,感谢您的支持。