『公告』 预祝您龙年大吉,万事如意, 过节期间, 大家如需数据服务,请拨打400 或直接添加客服微信,再祝大家龙年,心想事成。
关注我们 新浪 腾讯
首页 -> 3S基础知识 -> 全部-> 正文

大气散射

大气散射
散射现象的实质是电磁波在传输中遇到大气微粒而产生的一种衍射现象。因此,这种现象只有当大气中的分子或其他微粒的直径小于或相当于辐射波长时才发生。大气散射有三种情况:瑞利散射、米氏散射和无选择性散射。
    辐射在传播过程中遇到小微粒而使传播方向改变,并向各个方向散开,称散射。散射使原传播方向的辐射强度减弱,而增加向其他各方向的辐射。尽管强度不大,但从遥感数据角度分析,太阳辐射增加了漫入射的成分,使反射的辐射成分有所改变。返回传感器时,出反射光外还增加了散射光进入传感器。通过二次影响增加了信号中的噪声成分,造成遥感图像的质量下降。

    散射现象的实质是电磁波在传输中遇到大气微粒而产生的一种衍射现象。因此,这种现象只有当大气中的分子或其他微粒的直径小于或相当于辐射波长时才发生。大气散射有三种情况:

瑞利散射

    当大气中粒子的直径比波长小得多时发生的散射。这种散射主要由大气中的原子和分子,如氮、二氧化碳、臭氧和氧分子等引起。特别是对可见光而言,瑞利散射现象非常明显,因为这种散射的特点是散射强度与波长的四次方成反比,即波长越长,散射越强。当向四面八方的散射光线较弱时,原传播方向上的透过率便越强。当太阳辐射垂直穿过大气层时,可见光波段损失的能量可达10%

    瑞利散射对可见光的影像很大(图2.15)。乌云的晴空呈现蓝色,就是因为蓝光波长短,散射强度较大,因此蓝光向四面八方散射,使整个天空蔚蓝,使太阳辐射传播方向的蓝光被大大削弱。这种现象在日出和日落时更为明显,因为这时太阳高度角小,阳光斜射向地面,通过的大气层比阳光直射时要厚得多。在过长的传播中,蓝光波长最短,几乎被散射殆尽,波长最短的绿光散射强度也居其次,大部分被散射掉了。只剩下波长最长的红光,散射最弱,因此透过人气最多。加上剩余的极少量绿光,最后合成呈现橘红色。所以朝霞和夕阳都偏橘红色。瑞利散射对于红外和微波,由于波长更长,散射强度更弱,可以认为几乎不受影响。

米氏散射

    当大气中粒子的直径与辐射的波长想当时发生的散射。这种散射主要由大气中的微粒,如烟、尘埃、小水滴及气溶胶等引起。米氏散射的散射强度与波长的二次方成反比,即,并且散射在光线向前方向比后方向更强(图2.16),方向性比较明显。如云雾的粒子大小与红外线(0.7615)的波长接近,所以云雾对红外线的散射主要是米氏散射。因此,潮湿天气米氏散射影响较大。

无选择性散射

    当大气中粒子的直径比波长大得多时发生的散射。这种散射的特点是散射强度与波长无关,也就是说,在符合无选择性散射的条件的波段中,任何波长的散射强度相同。如云、雾粒子直径虽然与红外波长接近,但相比可见光波段,云雾中水滴的粒子直径就比波长大很多,因而对可见光中各个波长的光散射强度相同,所以人们看到云雾呈白色,并且无论从云下还是乘飞机从云层上面看,都是白色。

    由以上分析可知,散射造成太阳辐射的衰减,但是散射强度遵循的规律与波长密切相关。而太阳的电磁波辐射几乎包括电磁辐射的各个波段。因此,在大气状况相同时,同时会出现各种类型的散射。对于大气分子、院子引起的瑞利散射主要发生在可见光和红外波段。对于大气微粒引起的米氏散射从近紫外到红外波段都有影响,当波长进入红外波段后,米氏散射的影响超过瑞利散射。大气云层中,小雨滴的直径相对其他微粒最大,对可见光只有无选择性散射发生,云层越厚,散射越强,而对微波来说,微波波长比粒子的直径大得多,则又属于瑞利散射的类型,散射强度与波长四次方成反比,波长越长散射强度越小,所以微波才可能有最小散射,最大透射,而被称为具有穿云透雾的能力。

      京ICP备08100627号-22 京公网安备 11010802030428号