全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
生态承载力的概念最早来自于生态学。 1921 年, Park 和 Burgess 在生态学领域中首次应用了生态承载力的概念,即在某一特定环境条件下(主要指生存空间、营养物质、阳光等生态因子的组合),某种个体存在数量的最高极限。生态承载力是生态系统整体水平的主要特征之一,其定量分析已成为生态环境管理和区域可持续发展决策的有效依据。
该方案利用 Landsat TM/ETM+ 等遥感影像数据及统计年鉴数据,建立了生态承载力评价指标体系。利用遥感和 GIS 技术对主要指标(如 NDVI 指数等)进行空间数据分析处理,通过主成分分析法筛选指标、层次分析法(AHP)获得各指标权重,从定性和定量的角度分析研究区生态承载力,并提出实现该区良性发展的对策与措施。具体技术路线图如下:
数字高程模型(digital elevation model,DEM)数据;土壤类型数据。
植被覆盖度以多年归一化植被指数(NDVI)求平均计算得到,公式如下:
式中:f 为多年旬平均植被覆盖度;NDVI 为多年旬平均归一化植被指数;NDVImax、NDVImin分别多年旬平均 NDVI 的最大值和最小值。
气象数据包括年均降水量、年均气温等,通过气象站多年数据求平均,借助 ANUSPLIN4.36 软件完成插值工作;人口密度、经济密度和 GDP 密度等数据来自统计年鉴。所有数据均栅格化为 1 km。
评价体系包括 3 个指标:资源环境指标、生态弹性力指标和人类社会影响力指标。资源环境指标包含人均耕地面积、人均草地面积、人均林地面积、人均粮食占有量、人均水域面积和人均牲畜占有量;生态弹性力指标由平均海拔、起伏度、年均气温、年均江水、景观多样性指标、平均植被覆盖度、草地植被覆盖度和水域面积比构成;人类社会影响力指标包括草地放牧超载率、年造林面积、人均居民地面积、劳动力比重、经济密度和人口密度等。
在进行总体评价之前, 由于原始指标数据间存在的量纲不同, 需要指标间各数量级差异。本研究使用极差正规化法, 对第 i 个评价值进行极差正规化处理:
通过计算后, 将原始数据有效归一化在[ 0, 1] 之间, 使离散度具有一致性。
采用主成分分析筛选指标、AHP 确定综合评价指标的权重。首先,根据各主成分的贡献率,确定各主成分之间的重要性。依据层次分析法 1-9 的重要性标度方法,对各主成分的评比给出数量标度。然后,利用统计软件通过 AHP 计算出各评价指标的权重并检验权重的合理性。
根据各评价指标及其权重,参照状态空间法,建立研究区生态承载力的数学模型,计算研究区每个像元的承载力指数,计算公式如下:
基于以上分析,得到研究区生态承载力评价的模拟结果,该结果可为以下分析提供支持:
(1)研究区生态承载力分级
(2)研究区资源环境承载力评价
(3)研究区生态弹性力评价
(4)研究区人类社会影响力评价
(5)研究区基于生态健康的生态承载力综合分析评价