全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
应对每个创建的表面进行评估,以确保提供给程序的数据和参数所呈现出表面逼真。评估输出表面质量的方法有很多种,具体取决于创建表面的可用输入类型。
最常见的评估方法是使用等值线工具根据新表面创建等值线,然后将这些等值线与输入等值线数据进行比较。新建等值线的间隔最好是原始等值线间隔的二分之一,这样才便于在等值线间检查结果。原始等值线和新建等值线叠在一起绘制将有助于识别插值误差。
另一种从视觉上进行比较的方法是将可选输出地形分布情况与已知河流和山脊进行比较。地形要素类中包含河流和山脊,它们将在地形强化过程中由程序生成。这些河流和山脊应与区域中已知的河流和山脊重合。如果将某河流要素类作为输入,则输出河流与输入河流应该可以几乎完全重叠,但输出可能经过略微概化。
评估所生成表面质量的一种常见方法是在插值过程中保留一定比例的输入数据。生成表面后,可以从生成的表面中减去这些已知点的高度,从而检查新表面与真实表面的接近程度。这些差异可用来计算表面的测量误差,例如均方根 (RMS) 误差。
地形转栅格提供了一套完整的步骤,用于评估拟合后的 DEM 的质量、优化 DEM 分辨率以及检测输入数据中的错误。
该插值算法中存在一个小偏差,该偏差将使输入等值线对等值线的输出表面产生较严重的影响。该偏差将使输出表面在穿过等值线时略微变扁。这可能会在计算输出表面的剖面曲率时产生令人误解的结果,但并不明显。
如果在运行地形转栅格时运到任何问题,都可以对以下几点内容进行检查以获得有关大多数常见问题的说明及解决方案。