全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
密度分析可以对某个现象的已知量进行处理,然后将这些量分散到整个地表上,依据是在每个位置测量到的量和这些测量量所在位置的空间关系。
密度表面可以显示出点要素或线要素较为集中的地方。例如,每个城镇都可能有一个点值,这个点值表示该镇的人口总数,但是您想更多地了解人口随地区的分布情况。由于每个城镇内并非所有人都住在聚居点上,通过计算密度,您可以创建出一个显示整个地表上人口的预测分布状况的表面。
下图给出了一个密度表面的示例。相加到一起时,像元的人口值将等于原始点图层人口的总和。
“密度分析”工具可以将输入点图层的测量量分布到整个地表上,以生成一个连续的表面。
这里有一个密度分析应用的示例,考虑在某特定地区拥有多家店面的连锁零售店。对于每家店面,管理部门都保存有与顾客有关的销售数字。管理部门假定顾客根据路程的远近来选择光顾哪家店面。在本示例中,很自然地就会假定任何一个顾客总是会选择最近的那家店面。距离最近的店面越远,顾客到那家店面要走的路也就越远。但是离得比较远的顾客也可能光顾其他店面。管理部门想研究顾客居住地点的分布状况。根据这些家店面的销售数字和空间分布情况,管理部门需要将顾客巧妙地分散到整个地表上,以此创建显示顾客分布情况的表面。
要完成这项任务,“密度分析”工具将考虑店面之间的相互关系、光顾每家店面的顾客数量以及需要共享测量量(顾客)的某一部分的像元的数量。离测量点(即店面)较近的像元占有测量量的比例要高于那些离测量点较远的像元。