全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
加权叠加工具应用最常用的叠加分析方法之一来解决多准则问题,如地点选择和适宜性模型。在加权叠加分析中,将执行每一个常规叠加分析步骤。
与所有叠加分析一样,在加权叠加分析中,必须定义问题、将模型分解为子模型以及确定输入图层。
由于输入条件图层使用范围各异的不同编号系统,因此,要在一个分析中使用它们,必须对每一条件的每个像元进行重分类以使它们的优先等级相同,如 1 到 10,其中 10 为最佳。依据公共等级指定的优先级表示条件在某一事物中的优先度。优先值的等级具有相对性。即,优先级 10 的优先度是优先级 5 的两倍。
应通过在图层内互相参照来指定优先值,并且其含义在不同图层内也应该相同。例如,如果符合某个条件的位置指定优先级 5,则它对事物的影响和其他条件中优先级 5 的影响相同。
例如,一个简单的房屋适宜性模型可能包含三个输入条件:坡度、坡向和到公路的距离。坡度在 1 到 10 级范围内重分类,越平坦则成本越低:因此,最佳位置将被指定较高的值。随着坡度变得陡峭,指定的值将递减,最陡峭的坡度将指定级别 1。类似地,在 1 到 10 级范围内对坡向进行重分类。在这种情况下,越朝南的坡向越佳,会相应指定较高的值。对到公路的距离条件应用相同的重分类过程。位置距离公路越近则越佳,因其更易获得电力资源且所需车道较短,因此建设成本较为低廉。在重分类后的坡度图层中,就建设成本而言,适宜性值指定为 5 的位置是指定为 10 的坡度的两倍,而在重分类后的坡度图层和到公路的距离图层中,适宜性值同为 5 的位置需要的成本相同。
在加权叠加分析中,每个条件的重要性可能并不相同。您可以为重要条件赋予比其他条件大的权重。例如,在房屋适宜性模型示例中,如果出于长期保护的目的,则同坡度和到公路的距离条件的相关短期成本相比,您可能认为较好的坡向更为重要。因此,您可以使坡向值的权重两倍于坡度和到公路的距离条件的权重。
将输入条件乘以权重,然后进行相加。例如,在房屋适宜性模型中,将坡向乘以 2 并将三个条件相加,或以另一种方法表示,即(2 * 坡向) + 坡度 + 到公路的距离。
叠加分析过程的最后一步是对模型进行验证以确保模型所示的地点真实存在。对模型进行验证后,即会选取地点并建造房屋。
加权叠加工具允许您在一个工具中即可执行常规叠加分析过程中的多个步骤。
该工具包括以下步骤:
该工具只接受整型栅格作为输入,如土地利用或土壤类型栅格。连续(浮点型)栅格必须重分类为整型栅格才能使用。
通常,连续栅格的值分为不同的范围,如坡度范围或欧氏距离输出范围。必须为每个范围指定一个值,然后才能在加权叠加工具中对其加以使用。重分类工具可对这些栅格进行重分类。您可以保留指定给每个范围的值(但要注意新值对应的值的范围)并稍后在加权叠加工具中为像元值指定权重,也可以在重分类时指定权重。选择正确的评估等级后,只需将栅格添加到加权叠加即可。栅格中的像元将依据适宜性或优先级、风险或一些类似的统一等级进行设置。可根据重要性对输出栅格进行加权并将其相加以生成输出栅格。
如果加权叠加工具用于适宜性建模(定位适宜的区域),则值越高通常表示位置越适宜。如果该工具用于生成成本面(例如,要了解穿过地表所需的成本),则高值通常表示穿过成本较高。必须理解输入栅格中应用的等级值,这样才能了解输出栅格中值的意义。
运行加权叠加工具的步骤如下所示:
等级一端的值表示适宜性(或其他条件)的一个极值,而另一端的值表示另一个极值。
默认的评估等级是从 1 到 9,增量为 1(1 为最不适宜,9 为最适宜)。如果输入栅格已使用重分类工具重新分类为相同的测量等级,则确保所选评估等级与重分类时使用的等级匹配十分重要。例如,如果使用范围为 1 到 10(1 为最不适宜,10 为最适宜)的等级对栅格进行重分类,应将 1 到 10 且以 1 为增量的评估等级输入到加权叠加的评估等级中。
单击添加栅格按钮打开添加加权叠加 对话框。单击输入栅格箭头并单击栅格,或单击浏览按钮浏览至输入栅格并单击添加。可根据需要单击输入字段箭头来更改字段。单击确定。栅格即被添加到“加权叠加”表中。再次单击添加栅格按钮输入下一个栅格,依此类推。
为分析中的每个输入栅格的像元值指定评估等级值。这样便可对原本值类型不同的栅格执行算术运算。可根据重要性或适宜性更改指定给每个像元的默认值。例如,添加的土地利用栅格的值表示土地利用类型(森林 = 7,水体 = 3,荒地 = 1,灌木林地 = 10)。要查找适宜的建房位置,应根据哪种土地利用类型更适宜来指定等级值。例如,对于范围设置为 1 到 9 且增量为 1 的评估等级,可指定如下等级值:森林 = 3,水体 = 受限,荒地 = 9,灌木林地 = 7。
可基于每个输入栅格的重要性对其进行加权,或为其指定一个影响百分比。所有栅格的影响之和必须等于 100%。例如,就建造购物中心而言,坚实的土壤要比热门购物区的位置更为重要。
将每个输入栅格的像元值乘以栅格的权重(或影响百分比)。将结果像元值相加即会生成最终输出栅格。
如果将某个像元的等级值设置为“受限”,则在输出加权叠加结果中,该像元值的等级值将为指定评估等级中的最小值减去 1。如果加权叠加的输入中不包含 NoData 像元,则可以使用 NoData 作为等级值来排除某些值。然而,如果任何输入中包含 NoData 像元,则最可靠且较为重要的做法是改为使用“受限”。在加权叠加的结果中,可能会有一个或多个输入(输入中包含的 NoData 数与结果中包含的 NoData 数相同)和有意排除的受限区域包含 NoData 像元。不应混淆 NoData 值和“受限”值。它们各自具有特定的用途。某些 NoData 区域(不知道该区域的值)实际上可能却是适宜的区域。如果使用 NoData 而不是“受限”来排除某些像元值,并且在一个或多个输入中存在 NoData,您将无法确定 NoData 像元是表示此区域在使用中受限还是此位置没有可用的输入数据。
在创建成本面时,要谨慎使用“受限”作为等级值。因为使用“受限”会将像元值指定为评估等级的最小值减去 1,因此受限区域看似指定为成本最低,但实际上这些区域已从分析中排除。相反,对于要从分析中排除的区域,应指定为成本较高或将等级值设置为 NoData。
以下示例为关于新城市公园的选址分析。将考虑三个因素:土地利用、人口密度和到现有公园的距离。目标是在人口密度较高的区域找到适宜的土地利用区域(如空置土地),以便在拥挤区域提供现有公园尚不具备的绿色空间。
以上各图所示为加权叠加的输入栅格。从左到右为土地利用、人口密度和到公园的距离。
加权叠加模型处理过程在模型构建器中的位置如下图所示:
为每个输入栅格中的每个值类别指定一个新的重分类的值,评估等级的范围为 1 到 5,其中 1 表示适宜性最低,5 表示适宜性最高。例如,在土地利用栅格中,空置土地为非常适宜,而商用地则为不适宜。在人口密度栅格中,高密度区域的适宜性值较高,而低密度区域的适宜性值则较低。在到公园的距离栅格中,适宜性随着到现有公园的距离的增加而增加,因为远离现有公园的区域所得到的服务不够齐全。
也可将任何类指定为“受限”值,这表示相应的区域不可接受或无法利用。受限区域将从分析中排除。例如,在土地利用栅格中,机场和水体属于受限区域。
然后对三个输入栅格分别进行加权。在该加权叠加中,土地利用占有 50% 的影响力,人口密度占 15%,而到公园的距离占 35%。
最适宜的区域显示为红色。橙色区域的适宜性次之,绿色区域紧随其后。蓝色和紫色区域为最不适宜,而白色表示受限区域。修改适宜性值或影响百分比将产生不同的结果。