全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
除了分析空间模式之外,GIS 分析还可用于挖掘或量化要素间关系。“空间关系建模”工具可构建空间权重矩阵或利用回归分析建立空间关系模型。
用于构建空间权重矩阵文件的工具可衡量数据集中各要素彼此之间的空间相关性。空间权重矩阵是数据空间结构的一种表现形式:即,存在于数据集中各要素间的空间关系。
真正的空间统计会将空间和空间关系信息整合到数学分析中。“空间统计”工具箱中可接受空间权重矩阵文件作为输入参数之一的工具包括空间自相关 (Global Moran's I)、聚类和异常值分析 (Anselin Local Moran's I) 和热点分析 (Getis-Ord Gi*)。
“空间统计”工具箱中所提供的回归工具可以对地理要素所关联的数据变量之间的关系进行建模,从而使您可以对未知值进行预测或更好地理解可对要建模的变量产生影响的关键因素。回归方法使您可以对空间关系进行验证并衡量空间关系的稳固性。探索性回归允许您快速检查大量的 Ordinary_Least_Squares (OLS) 模型、汇总变量关系以及确定任一候选解释变量的组合是否满足 OLS 方法的所有要求。
工具 |
描述 |
探索性回归 |
“探索性回归”工具会对输入的候选解释变量的所有可能组合进行评估,以便根据用户所指定的各种指标来查找能够最好地对因变量做出解释的LOS模型。 |
生成网络空间权重 |
使用网络数据集构建一个空间权重矩阵文件 (.swm),从而在基础网络结构方向定义要素空间关系。 |
生成空间权重矩阵 |
构建一个空间权重矩阵 (SWM) 文件,以表示数据集中各要素间的空间关系。 |
地理加权回归 |
执行“地理加权回归 (GWR)”,这是一种用于建模空间变化关系的线性回归的局部形式。 |
普通最小二乘法 |
执行全局“普通最小二乘法 (OLS)”线性回归可生成预测,也可为一个因变量针对它与一组解释变量关系建模。 |