全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
I(s) = I(Z(s) > ct) = µ1 + ε1(s) Z(s) = µ2 + ε2(s),
其中 µ1 和 µ2 为未知常量,I(s) 是通过使用阈值指示 I(Z(s) > ct) 创建的二进制变量。请注意,现在有两种类型的随机误差:ε1(s) 和 ε2(s),因此它们各自存在自相关,并且它们之间存在互相关。概率克里金法要实现指示克里金法相同的功能很吃力,而使用协同克里金法进行尝试则可更好地实现。
例如,在下图中普通克里金法、泛克里金法、简单克里金法和指示克里金法概念使用相同的数据,请注意标注为 Z(u=9) 的基准的指示变量为 I(u) = 0,标注为 Z(s=10) 的基准的指示变量为 I(s) = 1。
如果要预测它们中间的位于 x 坐标 9.5 处的值,单独使用指示克里金法将给出接近 0.5 的预测值。但是,可以看出 Z(s) 刚好高于阈值,而 Z(u) 却远低于阈值。因此,有理由相信位置 9.5 处的指示预测值应该小于 0.5。概率克里金法尝试利用原始数据中除二进制变量之外的其他信息。但是,这也存在一些代价。必须要进行更多的估算,包括估算每个变量的自相关和互相关。然而,每次估算未知的自相关参数时,都会引入更多的不确定性,因此概率克里金法可能不值得付出额外努力。
概率克里金法可以使用半变异函数或协方差(用于表达自相关的数学形式)、交叉协方差(用于表达互相关的数学形式)和变换,但是不允许测量误差。