全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
Geostatistical Analyst 使用从地表上的不同位置采集的采样点,创建(插值)连续表面。采样点是一些现象的测量值,例如核电站的辐射泄漏、石油泄漏或者高程高度。Geostatistical Analyst 使用已测量位置的值生成表面进而预测地表上所有位置的值。
Geostatistical Analyst 提供了两组插值方法:确定性插值方法和地统计插值方法。所有方法都依赖于邻近采样点的相似性来创建表面。确定性方法使用数学函数进行插值。地统计依赖于统计方法和数学方法,可用于创建表面和评估预测的不确定性。
除了提供各种插值方法,Geostatistical Analyst 还提供了多种支持工具。例如,在制图之前,探索性空间数据分析 (ESDA) 工具可用于评估数据的统计属性。初步了解数据之后,可以使用多种克里金和协同克里金算法(普通克里金法、简单克里金法、泛克里金法、指示克里金法、概率克里金法、析取克里金法和经验贝叶斯克里金法)以及相关工具(例如数据变换、去聚和趋势移除)创建各种输出地图类型(例如预测、预测误差、概率和分位数)。如果数据是在面中采集到的,那么在创建连续预测或标准误差表面时,区域插值法会考虑面的形状和大小。
地统计方法以包含自相关(测量点之间的统计关系)的统计模型为基础。这类方法具有生成预测表面的能力,它们还可提供对这些预测的准确性的度量。
创建地统计模型所涉及的步骤主要包括:(1) 检查数据(分布、趋势、方向组成和异常值),(2) 计算经验半变异函数或协方差值,(3) 根据经验值拟合模型,(4) 生成克里金方程矩阵,(5) 对其进行求解来为输出表面中的每个位置获取预测值及其关联误差(不确定性)。