全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
要创建经验半变异函数,确定所有位置对值平方差。将这些位置对绘制成图后(y 轴坐标为平方差的一半,x 轴坐标为位置间距),该图称为半变异函数云。以下场景显示了一个位置(红点)与其他 11 个位置的配对情况。
变异分析的主要目标之一就是探索和量化空间依赖性(又称空间自相关)。空间自相关对距离越近的事物就越相似这一假设进行量化。因此,位置对的距离越近(在半变异函数云的 x 轴上最左侧),具有的值就越相似(在半变异函数云的 y 轴上较低处)。位置对的距离变得越远(在半变异函数云的 x 轴上向右移动),就应该变得越不同,平方差就会更高(在半变异函数云的 y 轴上向上移动)。
由于存在计算局限性(计算时间和内存限制),如果输入数据集的观测值数大于 5000,Geostatistical Analyst 将为结构分析和半变异函数模型拟合随机选择 5000 个观测值(大约提供 1200 万个点对)。生成的模型(表面)通常不受随机采样影响,因为所有数据都用于生成预测值。但如果数据集有一些非常大的值,它们不一定在用于生成经验半变异函数/协方差值的子集中,因此估计的半变异函数模型可能不同于使用整个数据集估计的半变异函数模型。