全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
对半变异函数和协方差函数建模的过程将半变异函数或协方差曲线与经验数据拟合。目标是达到最佳拟合,并将对现象的认知纳入模型。之后模型便可用于预测。
在拟合模型时,浏览数据中的方向自相关。基台、变程和块金是模型的重要特征。如果数据中有测量误差,请使用测量值误差模型。跟踪这一链接来了解如何将模型与经验半变异函数拟合。
半变异函数定义为
γ(si,sj) = ½ var(Z(si) - Z(sj)),
其中 var 是方差。
如果两个位置 si 和 sj,在 d(si, sj) 的距离测量上彼此相近,那么您会希望这两个位置相似,以便缩小两个位置的差值 Z(si) - Z(sj) 的大小。当 si 和 sj 距离逐渐增大时,它们变得越来越不相似,它们的值 Z(si) - Z(sj) 的差异也会增大。在下图中可以看到这一情况,其中显示了典型半变异函数的解析图。
请注意,差值的方差会随距离的增大而增加,因此可以将半变异函数视为相异度函数。与这一函数经常关联的术语也可用在 Geostatistical Analyst 中。半变异函数在其呈平稳状态时所达到的高度称为基台。它通常由两部分组成:原点处不连续(称为块金效应)和偏基台;二者一起形成基台。块金效应可以细分为测量误差和微刻度变化。块金效应就是测量误差和微尺度变化的和,由于任一组件都可为零,因此块金效应可以完全由一个组件或另一个组件形成。变程是半变异函数达到平稳基台处的距离。
协方差函数定义为
C(si, sj) = cov(Z(si), Z(sj)),
其中 cov 是协方差。
协方差是相关性的缩放版。因此当两个位置,si 和 sj 彼此相近时,您会希望这两个位置相似,而他们的协方差(相关性)会变大。当 si 和 sj 距离逐渐增大时,它们变得越来越不相似,并且它们的协方差会变为零。在下图中可以看到这一情况,下图显示典型协方差函数的解析图。
请注意,协方差函数随距离的增大而减小,因此可将其视为一种相似度函数。
在半变异函数和协方差函数之间存在以下关系:
γ(si, sj) = sill - C(si, sj),
从图中可看出该关系。由于这一相等关系,您可以在 Geostatistical Analyst 中使用两种函数中的任一种来执行预测。(Geostatistical Analyst 中所有半变异函数都拥有基台。)
半变异函数和协方差不是任意函数皆可。为使预测具有非负的克里金标准误差,只有部分函数可以用作半变异函数和协方差。Geostatistical Analyst 提供了多种可接受的选项,您可以为数据尝试不同的选项。您也可以通过同时添加多个模型的方式获得模型 - 此构造提供有效的模型,可以在 Geostatistical Analyst 中添加其中的最多四个模型。有一些当半变异函数存在时,协方差函数却不存在的实例。例如,有一个线性半变异函数,但它没有基台,并且没有相对应的协方差函数。Geostatistical Analyst 中仅使用带有基台的模型。在选择“最佳”半变异函数模型时,没有必须遵守的规则。您可以查看经验半变异函数或协方差函数并选择看起来适合的模型。你也可以使用验证和交叉验证作为指南。