全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
比较有助于确定创建地统计图层的模型相对于其他模型的好坏程度。要比较模型,必须有两个用于比较的地统计图层(使用 ArcGIS Geostatistical Analyst 扩展模块创建)。这两个图层可以使用不同的插值方法创建(如反距离权重法和普通克里金法),也可以使用相同的方法但用不同的参数创建。在第一种情况下,您将比较哪种方法最适合数据,在第二种情况下,您将检查在创建输出表面时不同输入参数对同一模型的不同作用。要比较两个模型,在内容列表中右键单击其中一个模型的名称,然后单击比较,如下所示:
比较 对话框使用执行交叉验证和验证中介绍的交叉验证统计数据。但它允许并排检查统计数据和图。通常,最佳模型应拥有最接近于 0 的标准平均值、最小的均方根预测误差、最接近该误差的平均标准误差,以及最接近于 1 的标准均方根预测误差。
常见的方法是:创建多个表面,将其中的一个标识为最佳,然后确定它本身即为最终结果还是将被传递到更大的模型(如用于房屋选址的适宜性模型)去解决现有问题。可对每个表面与其他表面进行系统地比较,除去两个比较表面中较差的一个,直到剩下最好的两个表面互相进行比较。可总结出,对于此项特定分析,最后两个表面中的较优者即为可能的最佳表面。
在比较不同方法和/或模型产生的结果时,有两个问题需要考虑:一个是最优性,另一个是有效性。
例如,某一模型的均方根预测误差可能更小。因此可得出它就是最佳模型的结论。但在与另一模型进行比较时,均方根预测误差可能更接近于估计的平均预测标准误差。这是更有效的模型,因为在不含数据的某一点进行预测时,只能使用估计的标准误差来评估预测的不确定性。您还必须检查标准均方根是否接近于一。如果标准均方根接近于一,并且估计的平均预测标准误差接近于根据交叉验证得出的均方根预测误差,则可以确定模型是合适的。在上图中,左侧克里金模型的均方根和平均标准误差小于右侧模型,但应首选右侧的克里金模型,因为它的均方根和平均标准误差相近。此外,左侧模型具有非常大的标准均方根,这表示模型存在严重的问题。
除了比较 对话框中提供的统计数据,在评估最佳模型时还应使用关于数据集的先验信息以及来自 ESDA 的先验信息。