全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
使用加权总和工具可以对多个输入进行加权及组合,以创建整合式分析。它可以轻松地将多个栅格输入(代表多种因素)与组合权重或相对重要性相结合,在这一方面它与加权叠加工具很相似。
这两种工具有两个主要区别:
不将重分类值重设到评估等级,分析可保持其分辨率。例如,在适宜性模型中,如果有 10 个重新分类到 1 至 10 等级的输入条件(10 为最佳),并且未对其指定权重,则加权总和输出值的范围可以从 10 到 100。对于同样的输入,加权叠加将把 10 至 100 的重分类分析范围规范化至评估等级,如返回到 1 至 10 等级。当只需要识别少数几个最适合的位置或指定数量的地点时,在加权总和中保持模型分辨率会很有用。
一般来说,连续栅格的值会分为不同的类别。例如,不同的坡度值可以分为平坦、适中、陡峭和非常陡峭。每个坡度值都可以指定为这些类别之一,并且指定了重分类值的类别相对于叠加分析中的条件,可以更好地表明该类的倾向性。使用重分类工具可以对这些栅格进行重新分类。
加权叠加工具最常用于适宜性建模,并且可用于确保遵循正确的方法。加权总和工具在需要保持模型分辨率,或需要浮点型输出或小数权重时很有用。
加权总和可将每个输入栅格的指定字段值与指定权重相乘。然后将所有输入栅格相加来创建输出栅格。
运行加权总和工具的步骤如下: