全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
f(Z(s)) = µ1 + ε(s),
其中,µ1 是一个未知常量,f(Z(s)) 是 Z(s) 的一个任意函数。请注意,您可以写成 f(Z(s)) = I(Z(s) > ct),这样,指示克里金法就成为析取克里金法的一种特殊情况。在 Geostatistical Analyst 中使用析取克里金法时,您既可预测值本身,也可预测指示器。
在 Geostatistical Analyst 中,提供的 g(Z(s0)) 函数其实就是 Z(s0) 本身和 I(Z(s0) > ct)。一般来说,相比普通克里金法,析取克里金法可以做更多事情。尽管回报更丰厚,但成本也更高。析取克里金法要求接受二元正态分布假设和 fi(Z(si)) 函数的近似值;但是很难对假设进行验证,而且从数学和计算角度来看,解决方案都很复杂。
析取克里金法可使用半变异函数或协方差(用于表达自相关的数学公式)以及变换,但是它不允许出现测量误差。