全国高分辨率土地利用数据服务 土地利用数据服务 土地覆盖数据服务 坡度数据服务 土壤侵蚀数据服务 全国各省市DEM数据服务 耕地资源空间分布数据服务 草地资源空间分布数据服务 林地资源空间分布数据服务 水域资源空间分布数据服务 建设用地空间分布数据服务 地形、地貌、土壤数据服务 分坡度耕地数据服务 全国大宗农作物种植范围空间分布数据服务
多种卫星遥感数据反演植被覆盖度数据服务 地表反照率数据服务 比辐射率数据服务 地表温度数据服务 地表蒸腾与蒸散数据服务 归一化植被指数数据服务 叶面积指数数据服务 净初级生产力数据服务 净生态系统生产力数据服务 生态系统总初级生产力数据服务 生态系统类型分布数据服务 土壤类型质地养分数据服务 生态系统空间分布数据服务 增强型植被指数数据服务
多年平均气温空间分布数据服务 多年平均降水量空间分布数据服务 湿润指数数据服务 大于0℃积温空间分布数据服务 光合有效辐射分量数据服务 显热/潜热信息数据服务 波文比信息数据服务 地表净辐射通量数据服务 光合有效辐射数据服务 温度带分区数据服务 山区小气候因子精细数据服务
全国夜间灯光指数数据服务 全国GDP公里格网数据服务 全国建筑物总面积公里格网数据服务 全国人口密度数据服务 全国县级医院分布数据服务 人口调查空间分布数据服务 收入统计空间分布数据服务 矿山面积统计及分布数据服务 载畜量及空间分布数据服务 农作物种植面积统计数据服务 农田分类面积统计数据服务 农作物长势遥感监测数据服务 医疗资源统计数据服务 教育资源统计数据服务 行政辖区信息数据服务
Landsat 8 高分二号 高分一号 SPOT-6卫星影像 法国Pleiades高分卫星 资源三号卫星 风云3号 中巴资源卫星 NOAA/AVHRR MODIS Landsat TM 环境小卫星 Landsat MSS 天绘一号卫星影像
处理栅格数据时,由于数据像元大小不符合要求,或者在进行栅格数据配准后,像元发生倾斜,或者对多个栅格数据进行分析时,需要使用相同的栅格分辨率,重采样到同一分辨率下,因此对栅格数据操作时经常要进行重采样操作。
处理栅格数据时,由于数据像元大小不符合要求,或者在进行栅格数据配准后,像元发生倾斜,或者对多个栅格数据进行分析时,需要使用相同的栅格分辨率,重采样到同一分辨率下,因此对栅格数据操作时经常要进行重采样操作。如下图所示,通过重采样将栅格调整到新的分辨率下。
栅格重采样主要包括三种方法:最邻近法、双线性内插法和三次卷积插值法。最邻近法是把原始图像中距离最近的像元值填充到新图像中;双线性内插法和三次卷积插值法都是把原始图像附近的像元值通过距离加权平均填充到新图像中。默认情况下,采用最近邻分配重采样技术,这种方法同时适用于离散和连续值类型,而其他重采样方法只适用于连续数据。
最邻近分配法是用于离散(分类)数据的重采样技术,因为它不会更改输入单元的值。将输出栅格数据集中单元中心的位置定位到输入栅格后,最邻近分配法将确定输入栅格上最近的单元中心位置并将该单元的值分配给输出栅格上的单元。
最邻近分配法不会更改输入栅格数据集中单元的任何值。输入栅格中的值 2 在输出栅格中仍将为 2,决不会为 2.2或 2.3。由于输出单元值保持不变,因此最邻近分配法应该用于名目数据或顺序数据,其中每个值都表示一个类、一个成员或一个分类(分类数据,如土地利用、土壤或森林类型)。
考虑到根据输入栅格创建的输出栅格会在操作中旋转 45°,因此将进行重采样。对于每个输出单元,都要从输入栅格中获取值。在下图中,输入栅格的单元中心为灰色点。输出单元为绿色阴影。要处理的单元为黄色阴影。在最邻近分配法中,将确定与要处理的单元中心(红色点)最邻近的输入栅格单元中心(橙色点),并将其指定为要处理的单元(黄色阴影)的输出值。对输出栅格中的每个单元都重复此过程。
双线性插值法使用四个最邻近输入单元中心的值来确定输出栅格上的值。输出单元的新值是这四个值的加权平均值,将根据它们与输出单元中心的距离进行调整。与最邻近分配法相比,此插值法可生成更平滑的表面。
下图与最邻近插值法的图例一样,输入栅格的单元中心为灰色点,输出单元为绿色阴影,要处理的单元为黄色阴影。对于双线性插值法,先确定与要处理的单元中心(红色点)最邻近的四个输入单元中心(橙色点),然后计算其加权平均值,再将所得的值指定为要处理的单元(黄色阴影)的输出值
由于输出单元值是根据输入单元的相对位置和值计算的,因此对于由某个已知点或现象的位置来决定分配单元值的数据(即连续表面),双线性插值法是首选方法。机场的高程、坡度、噪音强度以及河口附近地下水的盐度都是表示为连续表面的现象,最适合使用双线性插值法进行重采样。
三次卷积插值法与双线性插值法类似,除了通过 16 个最邻近输入单元中心及其值来计算加权平均值。下图演示了如何计算三次卷积插值法的输出值。先确定与要处理的单元中心(红色点)最邻近的 16 个单元中心(橙色点),然后计算其加权平均值,再将所得的值指定为要处理的单元(黄色阴影)的输出值。与双线性插值法相比,三次卷积插值法倾向于锐化数据的边缘,因为计算输出值时涉及的单元较多。
在ArcToolbox中依次找到Data Management Tools—>Raster—>Raster Processing—>Resample工具,工具界面如下图所示:
其中各参数含义如下:
Input raster: 输入栅格数据集
Output raster dataset: 输出栅格数据集,以文件格式存储栅格数据集时,需要制定文件扩展名,有以下格式可选,可将输出保存为 BIL、BIP、BMP、BSQ、DAT、GIF、GRID、IMG、JPEG、JPEG 2000、PNG、TIFF 格式或任意地理数据库栅格数据集
Output Cell size: 新栅格数据集像元大小
Resampling techinque:要使用的重采样算法,默认设置为NEAREST
NEAREST: 最近邻分配法
BILINEAR:双线性插值法
CUBIC:三次卷积法
MAJORITY:重采样法